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A growing body of research suggests that non-invasive electrical brain stimulation can

more effectively modulate neural activity when phase-locked to the underlying brain

rhythms. Transcranial alternating current stimulation (tACS) can potentially stimulate

the brain in-phase to its natural oscillations as recorded by electroencephalography

(EEG), but matching these oscillations is a challenging problem due to the complex and

time-varying nature of the EEG signals. Here we address this challenge by developing

and testing a novel approach intended to deliver tACS phase-locked to the activity

of the underlying brain region in real-time. This novel approach extracts phase and

frequency from a segment of EEG, then forecasts the signal to control the stimulation.

A careful tuning of the EEG segment length and prediction horizon is required and

has been investigated here for different EEG frequency bands. The algorithm was

tested on EEG data from 5 healthy volunteers. Algorithm performance was quantified in

terms of phase-locking values across a variety of EEG frequency bands. Phase-locking

performance was found to be consistent across individuals and recording locations. With

current parameters, the algorithm performs best when tracking oscillations in the alpha

band (8–13 Hz), with a phase-locking value of 0.77± 0.08. Performance was maximized

when the frequency band of interest had a dominant frequency that was stable over time.

The algorithm performs faster, and provides better phase-locked stimulation, compared

to other recently published algorithms devised for this purpose. The algorithm is suitable

for use in future studies of phase-locked tACS in preclinical and clinical applications.

Keywords: closed-loop stimulation, phase-locking, brain stimulation, tACS, EEG forecasting

INTRODUCTION

Transcranial electrical stimulation (tES) has shown considerable promise for modulating brain
activity in both preclinical and clinical applications (Nitsche and Paulus, 2000; Kuo and Nitsche,
2012; Dayan et al., 2013; Ruffini et al., 2013; Karabanov et al., 2016). Transcranial direct current
stimulation (tDCS) is one tES modality with mounting evidence of efficacy as a treatment for an
increasingly wide range of neurological or psychiatric disorders in recent studies andmeta-analyses
(Fregni et al., 2006, 2007; Nitsche et al., 2009; Brunoni et al., 2011; Brunelin et al., 2012; Kuo et al.,
2014; Meron et al., 2015). Thanks to their safety, non-invasiveness, and low cost, tES techniques
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such as tDCS and transcranial alternating current stimulation
(tACS) have the potential to become effective and inexpensive
interventions for neurological and psychiatric illnesses
characterized by abnormal brain activity. However, as these
techniques are relatively new, the optimal parameters of
stimulation are still poorly understood.

To date, the vast majority of tES studies have employed
“open-loop” approaches, in which stimulation is applied
without any input from the underlying target brain activity
to be modulated. “Closed-loop” techniques, in which target
brain activity via neurophysiological recording modalities like
electroencephalography (EEG) is used as an input signal
to continuously fine-tune the parameters of stimulation, are
increasingly employed for invasive stimulatory therapies such
as deep brain stimulation (DBS) (Rosin et al., 2011; Widge
et al., 2017) or responsive neurostimulation (RNS) in the setting
of epilepsy (Sun and Morrell, 2014). However, closed-loop
techniques are far less commonly employed for non-invasive
stimulation modalities such as tES, and indeed, few studies of
such approaches exist in the current literature (for a recent
review, see Karabanov et al., 2016).

Most tES research to date has focused on tDCS. However,
the use of a constant current in tDCS stands in sharp contrast
with the nature of physiological brain activity, which relies
fundamentally on oscillatory behavior (Bishop, 1932; Buzsáki
and Draguhn, 2004; Kaplan et al., 2005; Neuling et al., 2012;
Womelsdorf et al., 2014). This mismatch between the waveforms
of stimulation and target brain activity could potentially be
preventing tDCS from exerting its desired effect. Recent tDCS
studies have indicated that there is substantial variability in the
response to constant-current stimulation both across individuals
and even across sessions within a given individual (Wiethoff et al.,
2014; Chew et al., 2015; López-Alonso et al., 2015). Although
it is not clear why tDCS results are inconsistent, the oscillatory
stimulation of tACS could potentially be more closely tuned to
the neurophysiological processes of interest, and thusmay be able
to achieve more consistent or more potent effects in modulating
brain activity for research or clinical purposes (Reato et al., 2010;
Ali et al., 2013; Kutchko and Fröhlich, 2013).

Preclinical studies have shown tACS to be effective in
modulating cortical excitability (Kanai et al., 2010; Zaghi et al.,
2010; Wach et al., 2013) and in modulating frequency specific
brain activities as recorded through EEG (Zaehle et al., 2010;
Vossen et al., 2015). As with tDCS, the placement of the
electrodes and the intensity of the stimulation are important
parameters of stimulation for tACS (Kanai et al., 2008; Tecchio
et al., 2013; Ruffini et al., 2014). However, tACS has additional
parameters to be controlled: specifically, the frequency and phase
of stimulation. These parameters likely require optimization in
order for tACS to be used most effectively for the treatment
of brain disorders (Karabanov et al., 2016). Such optimization
will require both some knowledge about the frequency and
phase of the target brain activity, and some method for using
this information to regulate the frequency and phase of the
stimulation itself.

The frequency of the tACS stimulation has been shown to be
an essential parameter in targeting brain networks and functions,

with several studies reporting that the effect of the stimulation is
stronger when the frequency of the stimulation is matched to the
underlying brain activity (Kanai et al., 2008; Feurra et al., 2011;
Wach et al., 2013; Voss et al., 2014; Riecke et al., 2015; Cappon
et al., 2016). In one well-cited example, tACS was demonstrated
to be capable of inducing lucid dreaming during REM sleep—but
only when applied at frequencies in a specific range from 25 to
40 Hz (Voss et al., 2014). Thus, the frequency-specific effects of
tACS have the potential to provide stimulation that is tuned to
underlying brain activity, and has potent effects in altering brain
function.

Aside from frequency, the phase of stimulation is also proving
to be an important parameter in determining the potency of
tACS to modulate brain activity. The phase difference between
the tACS stimulation and the target brain oscillations has been
shown to be an important factor in determining how tACS
modulates functions such as vision, hearing, motor activity,
tremor, cognition, and working memory performance (Polanía
et al., 2012; Brittain et al., 2013; Riecke et al., 2015; Chander et al.,
2016; Guerra et al., 2016; Stonkus et al., 2016). In addition, it
is not clear whether and to what extent the brain will naturally
entrain to the external signal of tACS (Neuling et al., 2015;
Witkowski et al., 2015; Chander et al., 2016). Previous studies
show that there is either a very weak entrainment (Chander et al.,
2016) or the entrainment is strong only at very close proximity
to the tACS electrodes (Witkowski et al., 2015). In the absence
of entrainment, successful phase-locking would require tACS to
be continuously tuned to the underlying brain oscillations, in a
“closed-loop” manner.

To study phase-associated effects of tACS, several different
experimental designs have previously been used to avoid the
challenges around providing phase-locked brain stimulation.
External stimuli, such as auditory stimuli (Riecke et al., 2015)
or visual stimuli (Polanía et al., 2012), can induce brain rhythms
at known phase and frequencies, and can be used to provide an
external benchmark for applying phase-locked brain stimulation.
Alternatively, post-hoc analysis of brain recordings during the
stimulation can determine the instantaneous phase of the
stimulation compared to the brain activity (Neuling et al., 2015;
Witkowski et al., 2015). However, these approaches are only
applicable when the external sensory or motor oscillations may
be used as a benchmark signal. For higher-order regions involved
in cognition or emotion regulation, such external benchmarks
may be unavailable. A more generally applicable approach would
require (i) direct recording of oscillatory activity from the target
brain region; (ii) a method for extracting the desired frequency
and phase from the signal in real time, and (iii) a method for
using this information in real time to control the tACS frequency
and phase in an adaptive manner.

With these desiderata in mind, our objective is to develop
a computationally efficient algorithm that can analyze brain
oscillations obtained from EEG recordings, and use this
information in real time to provide phase-locked tACS at a
desired frequency band. To date, there has been relatively
little published work on EEG-based phase-locked tES. One
study sought to accomplish phase-locking through autoregressive
(AR) modeling of the intracranial EEG signal (Chen et al.,
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2013). The inherent difficulty is that, in order to set the
stimulation parameters, the future EEG signal must be predicted
from a segment of past EEG. Precise forward modeling of all
components of the EEG signal is challenging, and unlikely to
be feasible with acceptable accuracy under real-time constraints.
As an alternative approach, here we have investigated the
performance that can be achieved by using a simple forward
model of the EEG signal to select the tACS parameters, relying
on frequent updates of this model to ensure close tracking of
frequency and phase over time.

We sought to demonstrate the feasibility of this approach to
achieve real-time, phase-locked tACS. Given that the amount of
entrainment between the brain activity and tACS stimulation is
not well understood, it is presently challenging to accurately test
a phase-tracking algorithm on EEG data recorded while tACS
is being applied. Therefore, we present here a proof-of-concept
evaluation of the proposed approach on simulated and off-line
EEG recordings. Demonstrating the feasibility and theoretical
performance of this phase-locking approach is an essential first
step in the development of a closed-loop phase-locked tACS
system.

MATERIALS AND METHODS

In overview, here we have developed and tested an algorithm
that can forecast the dominant frequency and phase of an EEG
recording within a band of interest. We test the performance
of the algorithm on both synthetic signals and real EEG
recordings obtained from 5 healthy participants. We sought to
determine under what conditions and with what performance
phase tracking could be achieved, focusing on the influence
of frequency band, recording site, and algorithm parameters.
Performance was compared to a previously proposed method
based on AR modeling of the EEG (Chen et al., 2013).

Phase-Tracking Approach
Our goal was to develop an algorithm that can deliver oscillatory
brain stimulation output at a given frequency while maintaining
a phase lock on the EEG activity at that frequency in real time.
This is achieved by first analyzing the recorded EEG signal over a
defined window of time, and then forecasting this signal into the
future. The forecasting method relies on the assumption that in
a small window of time, the phase and frequency of a dominant
oscillation in the frequency band of interest of the recorded EEG
signal will remain approximately stable. An EEG signal segment
with duration Dpast is used to forecast phase and frequency of the
stimulation signal for a duration Dfuture. This forecasting step is
repeated continuously to achieve signal phase-locking over time.
If the phase and frequency of the EEG signal are extracted from
an adequately sized time window Dpast, an accurate forecasting
of the EEG signal is hypothesized to be possible. Details of the
algorithm are presented below.

Phase-Tracking Algorithm
The algorithm involves several steps that are performed
sequentially as shown in Figure 1. First, the recorded EEG signal
over a time window with duration Dpast is bandpass filtered

around the target frequency of interest; second, the Fast Fourier
Transform (FFT) of this signal segment is calculated; third, the
frequency and phase of the dominant component of the signal are
calculated from the FFT; finally, using the calculated frequency
and phase, the signal is forecasted for the duration Dfuture.

The first step of the algorithm is to filter the data to extract
the frequency band of interest. The algorithm uses a window
of recorded EEG data with duration (Dpast) as the basis for
forecasting a signal. The small sizes of the Dpast would limit the
order of the finite impulse response (FIR) filters, and therefore
this approach cannot not be reliably employed. Instead, a 10th
order elliptical infinite impulse response (IIR) filter is used to
bandpass-filter the recorded data. The filter was designed using
MATLAB “ellip” function to design a 10th order filter with 0.5
dB of passband ripple and 40 dB of stopband attenuation. To
avoid floating point instability commonly encountered when
the sampling frequency is much higher than the filtering
frequencies, we convert the filter transfer function to second-
order sections using MATLAB “ss2sos” function which are
applied in a sequential manner using MATLAB “sosfilt” function
(Figure 1B).

In the next step of the algorithm, to extract the phase and
frequency components of the signal, its FFT is calculated based
on the MATLAB “fft” function [based on FFTW (Frigo and
Johnson, 2005)]. Zero-padding of the signal to ten thousand
sample points is applied to decrease the bin sizes in the FFT,
providing a higher frequency resolution through interpolation.
The frequency of the signal is determined by the frequency of
the FFT bin with the maximum magnitude; the phase of the
signal is given by the angle component of its complex value. The
algorithm uses a simple sine function to forecast the signal using
the calculated phase and frequency parameters. To correct for
the phase-shift due to filtering, a frequency-dependent correction
factor is added to the phase calculated from the phase delay of
the filter. Note that in an on-line implementation of this method,
all instrumentation delays would need to be considered, but in
the off-line analysis presented here these adjustments were not
necessary.

Comparison Algorithm
A benchmark algorithm is desirable to assess the performance of
the present algorithm vs. previously published methods. Chen
et al. (2013) used an AR method to forecast the EEG signal.
As with our method, the EEG signal was first filtered using
an IIR filter. However, in an approach diverging from our
technique, the result was then used to train a 50th order AR
model using the Yule-Walker algorithm. We used MATLAB
“ar” function to train the AR model. The trained AR model
was used to forecast the EEG signal into the future using
MATLAB “forecast” function. As the method of Chen et al.
was devised with similar objectives to those of our own work,
this method serves as the comparator method for the purposes
of evaluating the performance of our phase-tracking algorithm.
For consistency and comparison purposes, we used the same
Dpast and Dfuture sizes when comparing the algorithm by Chen
et al. to the algorithm proposed in this work. We also used the
same filtering method for both algorithms. Chen et al., used
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FIGURE 1 | Overview of phase-tracking algorithm. (A) EEG recording from a healthy participant (electrode POZ in the standard 10–20 EEG montage). The algorithm

uses a segment of the data (past window, Dpast ) to forecast the signal into the future (future window, Dfuture). Here, a 300 ms window of past EEG data was used to

forecast 100 ms into the future. (B) The algorithm first uses a IIR band-pass filter to separate the signal that is within the frequency band of the interest. Here, the

frequency band of interest is the alpha band (8–13 Hz). Note that due to the input of a small segment of the signal in this step, the filter introduces an artifact in the

beginning of the segment. (C) The FFT of the filtered signal is then calculated. The FFT bin with maximum content is selected as the dominant frequency in the signal

and its phase and frequency is extracted for forecasting. (D) Based on the estimated phase and frequency, a sine wave is used to forecast the signal. For performance

evaluation, this forecasted signal may be compared to the EEG signal to determine the phase-locking value. IIR, infinite impulse response filter; FFT, fast Fourier

transform.

a genetic optimization method to optimize the order and type
of the filter. While their algorithm used only low order filters
(order 1–2), here we have used stable 10th order IIR filters.
This divergence in implementation from the previously reported
method is considered to be acceptable, since it is expected to
improve rather than hamper the performance of the comparison
algorithm. This choice was made in order to reduce the number
of factors that differ between the two methods.

Evaluation Data
The algorithms were tested on synthetic signals as well as
previously recorded EEG recordings.

Synthetic Signals
The use of a synthetic signal had two specific purposes, namely
to investigate the effects of signal-to-noise ratio in a controllable
manner, and to compare the FFT and AR approaches in a

scenario where a ground truth was available. The synthetic signals
were generated by adding Gaussian noise to a sine wave. The
sampling frequency was selected to be at 500 Hz. We have
selected a 500 Hz sampling frequency to ensure that aliasing
is avoided; higher sampling rates are unlikely to contribute
additional precision if the target EEG signals for phase-locking
are in the much lower range from delta to gamma frequencies
(i.e., <60–80 Hz), and might reduce the speed of the algorithm
to the point of preventing real-time tuning. The signal-to-noise
ratio of this synthetic signal was measured by taking the ratio of
the power in the signal to the power in the noise.

EEG Recordings
The algorithm was also tested on EEG recordings from 5
volunteers. Volunteers (5 female 42.2 ± 16.8 years, 4 right-
handed) were recruited. EEG recordings were acquired for 5 min
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while the volunteers were sitting quietly with their eyes closed.
The EEG data was recorded using ANT Neuro eego Sport device
(ANTB.V., Enschede, TheNetherlands), and the recordings were
from 64 channels of EEG sensors positioned using the 10–20 EEG
standard montage, via ANT Neuro Waveguard caps (ANT B.V.,
Enschede, The Netherlands). The sampling frequency was set to
2,000 Hz, and no in software filtering was applied during the
recording. The data acquisition system included a hardware low
pass filter with cut-off frequency of 524 Hz. After the recording,
the data was down sampled to 500 Hz. Approval for the study,
including the acquisition of EEG recordings from the volunteers,
was given by the Research Ethics Board of the University Health
Network.

Performance Evaluation
Both algorithms were implemented as functions in MATLAB
2015b. The functions took in an EEG signal vector with length
Dpast, and returned the forecasted signal vector with length
Dfuture. Note that the forecasted signal is simply a sinusoid, which
corresponds both to the estimated future EEG and to the desired
tACS waveform. This function was suitable to be used for real-
time application; however, for testing purposes we developed
an offline routine to simulate the performance of the algorithm
using pre-recorded data. For computation time measurements, a
MacBook Air 1.8 GHz Inter Core i5 2012 and an AsusTek AMD
A10-6700 3.7 GHz were used.

A moving window approach was used to test the algorithms
offline. The pre-recorded data was sampled using a window with
size Dpast and the window was moved with the step size Dfuture.
At every step the algorithms were applied to forecast the signal.
The forecasted signal was saved for further comparison with the
original signal.

Different frequency bands were used to test the performance
of the algorithms. Established EEG frequency bands were used
for frequencies below 20Hz [delta (2–4Hz), theta (4–8Hz), alpha
(8–13), and low beta (13–20 Hz)]. For frequencies above 20 Hz,
the beta and gamma bands were split into smaller bands of 10
Hz (20–30, 30–40, and 40–50 Hz). Phase tuning to a dominant
frequency becomes less meaningful when the bands are wide, due
to the potential for multiple dominant peak frequencies within
each band. Frequencies above 50 Hz were left outside the scope
of this study because of the decreasing power in the EEG signal at
those frequencies.

To compare execution time between the two algorithms, each
iteration was timed through a MATLAB script. The run time
for each iteration was measured 100 times for a range of input
window sizes, Dpast, from 250 to 2,000 ms, while the Dfuture

window size was set at 20 ms.

Performance Metrics
For comparison purposes, the EEG signal was filtered using the
bandpass filter to extract a dominant frequency, which should
ideally be matched exactly by the forecasted signal or stimulation.
The phases of the forecasted signal (ϕforecast) and the EEG
signal (ϕEEG) were calculated using Hilbert transformation and
compared using the Phase Locking Value (PLV). The PLV was
used to evaluate the performance of the proposed algorithm. PLV

is a value between 0 and 1, calculated using Equation (1).

PLV =
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In addition to this assessment of phase-locking performance,
the algorithms were also timed to measure their associated
computational costs, in order to assess their suitability for real-
time use. The computation-time measurements were repeated
100 times to provide a more accurate indication of the delay of
each algorithm in processing the input data and generating an
output signal. In addition, we also tested the algorithms’ speeds at
different past window sizes to evaluate the relationship between
window size, phase-locking performance, and computation time.

RESULTS

Synthetic Signal
The algorithms were first tested on synthetic signals that were
generated using a 10 Hz sine wave with added Gaussian
noise. The performance of the two algorithms was comparable
(Figure 2), and ranged from PLVs of 0.6 to 1. The performance
dropped as the amount of noise added to the signal increased.
In these tests, Dpast was set to be 300 ms and Dfuture was set at
50 ms. Changes in these parameters can change the performance
of the algorithms (see Section Optimizing Window Sizes for
Stimulation Using Actual EEG Data); however, the trend of
change with SNR remains the same.

Computation Time
As only a sufficiently fast algorithm is suitable for real-time
applications, we next assessed the computation time for the FFT
and the AR algorithms. The present algorithm based on FFT
proved to be approximately two orders of magnitude faster than
the AR algorithm when run on the same hardware (Figure 3).
For example, for a Dpast of 400 ms, the FFT algorithm required
0.68 ms of computation time to forecast the signal, compared to
72 ms for the AR algorithm. Increasing size of the input window
Dpast over the range 250–2,000 ms only slightly increased the
computation time for either algorithm. In all cases, the run time
for the FFT-based algorithm was less than 1 ms. It is important
to note that the size of the forecast window Dfuture does not affect
the run time of the algorithm for one step; however, it controls
the number of steps the algorithm needs to run.

Optimizing Window Sizes for Stimulation
Using Actual EEG Data
We next assessed how the sizes of the past and future
windows affected the performance of the algorithm.We explored
the relationship between window size and phase-locking
performance across a range of frequency bands commonly
studied in EEG recordings. For each band, the performance of the
algorithmwas calculated at a range of input window sizes from 50
to 1,000 ms, and across a range of output window sizes from 50 to
500 ms. The results of this performance evaluation are illustrated
in Figure 4, using recorded EEG data for one recording site
(POZ in the standard 10–20 EEG montage) in one representative
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FIGURE 2 | Evaluating the FFT algorithm and AR algorithm when applied to synthetic signal at 10 Hz. (A) The phase locking value was used as a metric of algorithm

performance. As the signal-to-noise ratio decreased, the performance of the algorithms also decreased. The simulation was repeated 10 times; the value and the

error bars at each point were calculated by taking the mean and the standard deviation of the 10 measurements. (B) Two synthetic signals, one with high

signal-to-noise ratio and one with low signal-to-noise ratio, were selected and are presented along with the forecasted signal. (C) Rose plots of phase difference

between the ideal forecasted signal and the forecasted signal from the algorithms illustrate phase-locking performance of the FFT and AR algorithms under high and

low SNR conditions on the 10 Hz synthetic signal.

FIGURE 3 | Speed of execution of iteration for FFT algorithm and AR

algorithm. The time for each iteration was measured 100 times for a range of

input window sizes Dpast from 250 to 2,000 ms. The Dfuture window size was

set at 20 ms. The speed and the error bars for the speed are calculated by

taking the mean and standard deviation of the 100 measurements. Computer

1 is a MacBook Air 1.8 GHz Inter Core i5 2012 and computer 2 is an AsusTek

AMD A10-6700 3.7 GHz.

participant. For all frequency bands, performance universally
improved as the size of future window decreased. However,
the optimal past window size proved to be dependent on the

frequency band of interest, ranging from∼200–300 ms at higher
frequency bands to 900–1,000 ms at lower frequency bands.
Thus, determination of the optimal window size is dependent on
which EEG band contains the physiological signal of interest for
modulation.

Phase-Locking Performance on Actual
EEG Signal across Individual Participants
Using the same window optimization strategy, we next
determined the optimal past window across all 64 channels
of EEG recordings obtained from the 5 volunteer participants
(Figure 5). The optimal window size remained consistent across
all participants when phase locking to any given frequency
band (Figure 5A). In addition, the performance of the algorithm
proved to be similar across participants, while the performance
was best when phase locking to the 8–13 Hz frequency band
(Figure 5B). An ANOVA showed a significant difference between
frequency bands [F(6, 28) = 11.59, p = 1.666E-6], and post-
hoc pairwise t-tests showed a significant difference between 8
and 13 Hz and each of the other groups (p < 0.01 for each
group, Bonferroni-corrected for multiple comparisons) except
2–4 Hz (n.s.).

We next assessed the performance of the FFT-based algorithm
across the array of sensors in the 64-channel EEG montage. For
this analysis, the phase locking performance was tested for EEG
recordings acquired at each of the 64 different EEG sites, using
the optimal values of Dpast obtained from Figure 5A. For each
EEG sensor, the PLV values calculated in each participant were
averaged, and a map of these average PLV values was created
(Figure 6). This map provides an indication of which locations
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FIGURE 4 | Performance of the algorithm across different future and past window sizes in different frequency bands. The algorithm was evaluated at window sizes

ranging 50–500 ms for future window and 50–1,000 ms for past window from recording site POZ (10–20 EEG system). The PLV value was used to evaluate the

performance of the algorithm across these ranges in each EEG frequency band.

FIGURE 5 | Performance of the algorithm at different frequency bands applied to EEG data recorded from 5 different participants. (A) Data obtained across all 64

channels of EEG recordings were used to calculate the optimal past window size Dpast for each participant (participant plotted as adjacent points in each band). The

points and the error bars for each participant are calculated by taking the mean and standard deviation of the optimal window size as determined over the 64

channels. (B) Using the optimal past window size for each channel, participant and frequency band, the performance of the algorithm was calculated in terms of

phase-locking value (participants plotted as adjacent points in each band). The data points and their error bars are calculated by taking the mean and standard

deviation over all the channels for each participant and frequency band.

provided recordings most suitable for phase locking to each
frequency band. In general, the PLV variations between sites were
comparatively minor, with performance overall in the 0.6–0.7
range across all sites and bands, varying by no more than 0.06
to 0.1 between the best and worst site at any given frequency
band. Considered topographically, for occipital electrodes, phase
locking performance was best in the alpha band (8–13 Hz), while
for parietal electrodes, phase locking performance was best in the

beta (13–20 Hz) and gamma (30–40 Hz, 40–50 Hz) frequency
bands.

Evaluating AR and FFT Algorithms Applied
to the Recorded EEG
AR and FFT algorithms were tested on EEG recordings to further
compare their performances when phase tracking to alpha
oscillations (8–13 Hz). First, the optimal size of past window for
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both algorithms was shown to be at 0.35 s (Figure 7A). Thus, the
size of the past window was set to 0.35 s, and the algorithms’
performance was compared across the participants (Figure 7B).
The two algorithms’ performances achieve comparable results,
with the FFT algorithm performing slightly better in more

than 99% of the electrodes. A three-way ANOVA analysis was
conducted to examine the difference in the performance of
the algorithms while controlling for the effects of electrodes
and participants. There was a significant difference in the
performance of the algorithms [F(1, 571) = 133, p < 0.001].

FIGURE 6 | Phase-locking performance of each channel across individuals. Mean PLV values across individuals are mapped on to the standard head model at each

EEG frequency band. Performance was consistent across sites and bands, with slightly better performance in the alpha band for occipital electrodes and slightly

better performance in beta and gamma bands for temporal and lateral parietal sites.

FIGURE 7 | Evaluating the FFT algorithm and AR algorithm when applied to EEG recording at 10 Hz. (A) The size of the past window was varied between 0.2 and

0.6 s to find the optimal past window size for both algorithms. The value and the error bars at each point were calculated by taking the mean and the standard

deviation of the PLV measurements across the 5 participants. (B) The performance of each algorithm measured through PLV when applied to EEG recorded from 5

participants. The value and the error bars at each point were calculated by taking the mean and the standard deviation of the PLV measurements across 64 electrodes.
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Effects of Variability of the Peak Frequency
and Power of the Frequency Band on
Phase-Locking Performance
We investigated how the presence or absence of a dominant
frequency that is stable over time can affect the performance
of the FFT-based algorithm. First, using the optimal past
window size for each channel, participant and frequency band
(Figure 5A), the performance of the algorithm was calculated in
terms of phase-locking value. Then, the variability of the peak
frequency was calculated by taking its standard deviation; peak
frequency values were taken from each window over the signal
duration.

When phase locking to the alpha frequencies (8–13 Hz),
it was found that the FFT-based algorithm performed better
when the signal had smaller variability in the peak frequency,
as might be expected (Figure 8). Notably, different individuals
had rather different degrees of variability in peak frequency,
resulting in some variability in the final PLV performance
across individuals. However, in all participants, the algorithm
achieved PLV values above 0.5, and in some participants achieved
PLV values in the 0.8–0.9 range. While a strong negative
relationship was observed between the average peak frequency
variability and the average PLV in the Alpha band (8–13
Hz), no other frequency band exhibited such strong results.

Overall, there was no consistent significant correlation between
the average peak frequency variability and the average PLV
(Table 1).

Lastly, we investigated the relationship between the power
of the frequency band of interest and the PLV (Figure 9). The
power was quantified by measuring spectral power of the target
frequency band divided by the power of the overall signal. The
band powers did not show strong correlation with the PLV
(Table 2).

DISCUSSION

Here we have presented a new approach for phase-locking tACS
brain stimulation to an EEG signal in amanner that is fast enough
to enable real-time, “closed-loop” phase-locked tES. Algorithms
suitable for this purpose should be able to achieve good phase
locking performance, while still being sufficiently fast for real-
time implementation. To this end, a simple algorithm is desirable
because it has fewer parameters to be optimized and thus can
have a faster speed of execution. On the other hand, a simple
algorithm is unlikely to be able to model all components of the
complex EEG sufficiently well to forecast it more than a few
milliseconds in the future, thus creating a need for frequent
updating of the stimulation parameters.

FIGURE 8 | Phase locking value vs. variability in the peak frequency for each channel and participant in 7 different frequency bands. Each dot represents the data

from a given channel and participant.
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TABLE 1 | Correlation between phase locking value and variability in the peak frequency.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

Bands R2 p R2 p R2 p R2 p R2 p

2–4 Hz <0.01 0.74 0.19 <0.01 0.03 0.17 0.80 <0.01 0.01 0.44

4–8 Hz 0.28 <0.01 0.07 0.04 0.35 <0.01 0.74 <0.01 0.40 <0.01

8–13 Hz 0.46 <0.01 0.08 0.02 0.96 <0.01 0.01 0.53 0.14 <0.01

13–20 Hz 0.49 <0.01 0.33 <0.01 0.03 0.20 0.84 <0.01 0.01 0.55

20–30 Hz 0.02 0.27 0.50 <0.01 0.36 <0.01 0.74 <0.01 0.01 0.53

30–40 Hz 0.14 <0.01 0.59 <0.01 0.61 <0.01 0.94 <0.01 0.01 0.36

40–50 Hz 0.05 0.09 0.75 <0.01 0.46 <0.01 0.89 <0.01 0.05 0.07

FIGURE 9 | Phase locking value vs. band power for each channel and participant in 7 different frequency bands. Each dot represents the data from a given channel

and participant.

Offline methods such as the complex wavelet transform
(CWT) (Adeli et al., 2003; Valde et al., 2004) and the Hilbert-
Huang transform (HHT) (Bajaj and Pachori, 2012; Lin and
Zhu, 2012) have previously been used to extract phase and
frequency information from EEG data. These methods, although
very powerful for describing frequency and phase information in
non-stationary signals like EEG, are not suitable for the delivery
of phase-locked tACS in real-time, closed-loop applications.
Their limitation arises because the analysis of non-stationary
data is difficult to reconcile with the task of forecasting a
future signal. Non-stationary analysis methods assume that the

signal’s properties will change over time, whereas the act of
forecasting assumes that the system’s dynamics will remain
stable for a certain length of time. Although the EEG is highly
non-stationary, the nature of the forecasting task with closed-
loop tACS nonetheless requires that over at least a short time-
period, an assumption of stationarity be made, thus rendering
methods such as the HHT less well suited to real-time, adaptive
closed-loop stimulation. The method proposed here assumes
stationarity over short periods of time only and relies on frequent
updates (made possible by a computationally efficient model) to
adapt to a non-stationary signal; in this manner, forecasting is
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TABLE 2 | Correlation between phase locking value and power ratio.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

Bands R2 p R2 p R2 p R2 p R2 p

2–4 Hz 0.03 0.14 0.34 <0.01 0.01 0.52 0.19 <0.01 0.01 0.54

4–8 Hz 0.17 <0.01 0.18 <0.01 0.06 0.04 0.26 <0.01 0.27 <0.01

8–13 Hz 0.52 <0.01 0.25 <0.01 0.80 <0.01 0.39 <0.01 0.45 <0.01

13–20 Hz 0.09 0.01 0.17 <0.01 0.02 0.26 0.59 <0.01 0.40 <0.01

20–30 Hz <0.01 0.84 0.28 <0.01 <0.01 0.63 0.31 <0.01 0.08 0.02

30–40 Hz 0.30 <0.01 0.20 <0.01 0.62 <0.01 0.23 <0.01 0.16 <0.01

40–50 Hz 0.46 <0.01 0.19 <0.01 0.67 <0.01 0.23 <0.01 0.13 <0.01

possible while still adjusting to changes in the signal dynamics
over time.

In this work, we used an FFT-based algorithm to explore
the tradeoffs between algorithm simplicity and speed on one
hand, and phase-tracking performance on the other hand. The
FFT-based algorithm was tested using both synthetic signals and
recorded EEG. The algorithm was compared to the previously
published algorithm by Chen et al. (2013) and was determined
both to be faster (by up to 2 orders of magnitude) and to
achieve a slightly tighter phase-locking as evident in higher
PLVs. For synthetic signals, both algorithms performed well
when the noise level was low, while performance dropped as
noise level increased. The FFT-based algorithm works based on
the assumption that the frequency of the signal of interest is
stationary for short periods of time; thus, it can be estimated
through FFT analysis. While the EEG signal is highly non-
stationary, we found that this simplifying assumption can
nonetheless lead to high PLV results if the algorithm parameters
are tuned to the frequency band of interest.

The run times for the ARmodel appeared to be longer than the
forecasting window,making themethod inapplicable to real-time
phase-locked tACS; although a faster processor could remedy
this issue, such a processor may not be suitable for use in some
clinical settings (e.g., at-home or portable tACS devices). As
such, the FFT-based algorithm may be better suited for eventual
implementation in small, inexpensive, home-based stimulators,
without any sacrifice of performance.

Based on the FFT algorithm performance, it takes about
1 ms of computation time to predict 25 ms into the future.
Considering the use of this method in a closed-loop phase-
locked tACS device, the delays in the closed loop system should
not be larger than 24 ms. Given steady recent progress in the
development of new tACS devices, this constraint is not expected
to be difficult to overcome. On the other hand, the past window
needs to be considerably longer than the forecasting window
(see Figure 4). This result implies that, in order to achieve
reasonable stimulation duty cycles, it will be necessary to record
and stimulate at the same time. The applicability of the method
proposed here will therefore be contingent on being able to
effectively remove the sinusoidal stimulation artifact from the
recordings. Methods such as template subtraction (Voss et al.,
2014), synthetic aperture magnetometry (Soekadar et al., 2013),

saw tooth tACS (Dowsett and Herrmann, 2016), and amplitude
modulated tACS (Witkowski et al., 2015) have been used to
remove artifacts during tACS stimulation. If our analysis had
revealed that a longer forecasting with shorter past windows was
possible, we could have concluded that alternating stimulation
and recording was possible, thus avoiding the issue of artifact
removal. However, our results show that the artifact removal step
will indeed be essential.

Our evaluation of the FFT-based algorithm included analyses
performed to determine the optimal parameters for the past
and future windows Dpast and Dfuture, when phase-locking to
different frequency bands (Figures 4, 5). Importantly, in these
analyses, the optimal parameters were found to be consistent
between individuals, a finding which supports the generalizability
and clinical relevance of the proposed method. The algorithm
performed maximally when phase-locking to the alpha band.
A slightly lower performance in the gamma band compared
to the alpha band was to be expected, because gamma is a
broader band and less likely to have a well-defined peak frequency
that the phase-tracking algorithm can lock onto. Nonetheless,
performance met or exceeded a PLV of 0.6 across all frequency
bands from delta to high gamma (Figure 5), such that the FFT-
based algorithm still appears suitable to be used across a variety
of different frequency bands of interest.

Testing on the EEG data recorded from 5 healthy participants
revealed only minor variability in performance of the algorithm
both among locations of EEG recording and individuals. The
observed variability can be due to multiple reasons, including
noise level during the recording and frequency differences among
the regions of the brain and individuals. Our analysis shows that
there is a relationship between the variability of the dominant
frequency component in the alpha band (8–13 Hz) and the
performance of our algorithm. However, this relationship was
not visible in other frequency bands. Further testing may need to
be done to discover how this variability will impact performance
during more complex cognitive tasks.

The feasibility of real-time phase-locking of tACS stimulation
to the underlying EEG signal opens up a new domain of
potential studies in the field of non-invasive brain stimulation.
At present, variability of response to tES is considerable both
across individuals and across sessions within a given individual
(Wiethoff et al., 2014; Chew et al., 2015; López-Alonso et al.,
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2015). Moreover, the potency of tACS in modulating any given
brain function increasingly appears to be dependent on whether
the frequency of stimulation matches the frequency of the target
brain process of interest (e.g., Voss et al., 2014). However, at
present, it remains an open question as to how phase-locking
might affect the potency of tACS, or indeed whether “closed-
loop” phase-locking might help to reduce the variability of tES
itself.

The present study was intended to demonstrate proof-of-
concept and feasibility for an FFT-based, real-time algorithm
for phase-locked tACS. Considering the prospects of closed-loop
tACS, a demonstration of phase-tracking on off-line recordings
is a necessary first step. The brain’s response to tACS, in terms
of phase alignment, is currently poorly understood (Neuling
et al., 2015; Witkowski et al., 2015; Chander et al., 2016).
Characterizing the performance of a phase-tracking algorithm
in the absence of an adaptive brain response will provide a
frame of reference for future closed-loop experiments. The
implementation of the method in a closed-loop experiment is
needed next to demonstrate its performance in the presence of
stimulation artifacts and possible entrainment of brain activity to
the stimulation.

Limitations of the present study include a relatively small

sample size and the need for further study of the method during

the performance of behavioral tasks, rather than in the simple

case of the eyes-closed resting state. Such future work will help
to clarify the effect of in-phase vs. out-of-phase stimulation on
motor, sensory, and cognitive functions of interest. Further, the
effect of tACS on the EEG has not been considered in this study.
It is anticipated that the EEG signal may change in response to the
effect of tACS (Karabanov et al., 2016), and the effect of this EEG
response will be observed once this algorithm is implemented in
a closed-loop EEG-tACS system.

Future systematic studies of the role of phase-locking in tES
will require an apparatus capable of maintaining stimulation
that is phase-locked (or anti-locked) to the underlying brain
activity with reasonable accuracy, for prolonged periods of
time, adaptively and in real time. The FFT-based algorithm
of the present study offers a viable approach for doing
so, maintaining PLV levels that match or exceed previous
approaches while incurring markedly lower computational
burdens, and thus allowing faster adaptation to follow the
underlying EEG signal. The FFT-based algorithm may thus
enable more detailed study of a new and potentially important

parameter of tES: namely, the role of phase-matching between
the neuromodulatory tES input and the underlying EEG signal of
interest.

CONCLUSION

As the field of tES continues to improve its understanding of
how stimulation parameters (frequency, intensity, waveform,
montage) interact with underlying brain physiology, the role
of phase-locking between the stimulator and the target brain
activity will no doubt become clearer. A necessary precondition
for progress on this issue is the availability of a technique for
maintaining phase synchrony between the stimulator and the
brain in real time. It is hoped that the algorithm presented here,
along with other similar methods, will facilitate work on this
issue and ultimately yield more effective tES methods, for both
preclinical and the clinical applications.
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